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Hopf-Galois Theory

An extension L/K is Hopf-Galois if there is a K-Hopf algebra H
and a K-algebra homomorphism p : H — Endk(L) such that

> p(ab) =3 ) wlhy(@)u(h))(b)
» " ={ac L|uh)(a)=e(h)aVhe H} =k
> yinduces | ® pu: L#H > Endk(L)



As is known, the Hopf-Galois structures on a Galois extension L/K
with G = Gal(L/K) are in 1-1 correspondence with the regular
subgroups N < B = Perm(G) such that A\(G) < Normg(N), where
the Hopf algebra which acts is Hy = (L[N])*©) the fixed ring
under the simultaneous action of G on scalars and on N.

This implies that |[N| = |G| but does not necessarily force N to be
isomorphic to G, and indeed we may define

R(G) ={N < B | N regular and \(G) < Normg(N)}
R(G,[M])={N € R(G) | N = M}

where [M] represents any group of cardinality |G|.



Here however, we will, in fact, consider R(G, [G]) as this includes
some primordial examples of the N which may arise.

For all G, we have N = p(G) € R(G,[G]) since )\(G) centralizes
p(G) and thus certainly normalizes it, where H, ) = K[G] the
group ring, i.e. the canonical action by virtue of G being the
Galois group of L/K.

If G is non-abelian then A(G) # p(G) and since A(G) obviously
normalizes itself we have A\(G) € R(G, [G]) where Hygy = Hy is
the so-called canonical non-classical structure.



The relationship we focus on, as exemplified by A(G) and p(G), is
that
Normg(p(G)) = Normg(A(G)) = Hol(G)

which leads to the discussion of the multiple holomorph of G.



For A\(G) < B = Perm(G), one can ask for what other regular
subgroups N < B have the same normalizer, (holomorph) as G ,
namely Hol(N) = Hol(G).

The equality implies that N < Hol(G) and A(G) < Hol(N).

If we restrict our attention to those N which are isomorphic to G
then N is a conjugate of A(G) by regularity.

So for such an N, where 7 € B is such that TA(G)7~1 = N then

TNormg(A(G))r~! = Normg(rA(G)r 1)
= Normp(N)
= Normg(\(G))

which means 7 € Normg(Hol(G)), and the converse is true as well.



Let us make a few definitions:

NHol(G) = Normg(Hol(G)) = Normg(Normg(A(G)))
the multiple holomorph of G

T(G) = NHol(G)/Hol(G)

H(G) = {N regular | N = G and Hol(N) = Hol(G)}

We observe that H(G) C R(G, [G]), and the virtue of this is that
H(G) (for many different G) may be readily enumerated.



We have the following basic fact(s) about T(G) and H(G).
Proposition
Given the above definitions:

Orbr(6)(A(G)) = H(G)

= {N regular | N = G and N < Hol(G)}
= Orbr(g)(N) for any N € H(G)

and in particular | T(G)| = |H(G)|.



The multiple holomorph of finite abelian groups was determined by
G.A. Miller [4] in the early 1900's and what was utlimately
discovered was that |T(G)| is trivial if G has odd order, and
|T(G)| <4 in general.

Indeed, for many groups |T(G)| =2, i.e. H(G) ={\G),p(G)},
for example, if G is a non-abelian simple group, or complete.

Since then T(G) has been computed for other classes of groups,
by Caranti for perfect groups [1], and p-groups of class two [2],
and the presenter [3] for the case of dihedral groups.

And indeed, for our discussion, we shall focus on the case where
G=D,.



We examine the case where G = D, for n > 3 since both H(G)
and T(G) are worked out in detail in [3].

We present the n-th dihedral group as follows:

Dp={x,t| x" =1,t> = 1,xt = tx "1}

= {1,x,x%, ., x" Lt tx? L T

and we also have a presentation of Aut(Dp).



Proposition
For n > 3 with D, = {t*x"|a € Zy; b € Z,,} and letting U, = Z%,

(a) Aut(Dp) = {¢ijli € Zn;j € Up} where

¢’_’j(taxb) — taXiaJrjb
¢lé,j2 © ¢i1,j1 = ¢i2+j2i17j2jl
b,1) =1 the identity

(b) Aut(D,) = Hol(Zp)



The groups in H(D,) are subgroups of Hol(D,) where typical
elements have the form

(t°x°, ¢1,)
and if we make the identification p(t'x/) = (t'x/, 1) € Hol(D,)

then since A(D,) is the centralizer of p(D,) we have

Mt'x)) = (¢, ¢(0,—1))i(xa ¢(271))j



The description of #(D,) is given in [3, Theorem 2.11]

Theorem

H(Dn) = {{(x; d(ur1.1)), (£, P(0,-0))) | u € Th}
where
To={ueU,| =1}

the group of exponent 2 units mod n.



The size and structure of the group T, is basically determined by
the number of quadratic residues of n, which in turn is keyed to
the number of prime divisors of n vis-a-vis the Chinese Remainder
Theorem, and is given below.

Lemma
(Z2)" e<=1
For n = 2ep1f1p;r2 cpl, T (Zy) Y e=
(Z2)*? e>3



For ue T, let
Ny, = ((Xv ¢(u+1,1))) (ta ¢(O,—u))>
= <XLI7 tu>
and we note that N_1 = p(D,) and Ny = A(D,).

More generally, by [3, Corollary 1.13] we have, for any
N, € H(D,), that NP = Centg(N,) = N_,.



As we wish to consider the fixed rings Hy = (L[N])® where the G
acting on N is A(G) of course, we have the following, which also
comes from [3]. If we let r = x; = A(x) and f = t; = A(t) then

Proposition
A(Dp) = (r,f) acts on N, = (xy, t,) as follows:

rxur_1 = Xy

rtgr~t = tuxu_(u+1)
fx,f 1= x,

ft,fl=t,



With this we can establish the following.

Theorem
For each N, € H(D,), none of the Hy, = (L[N,])P" are
isomorphic as Hopf algebras.

Proof.
Let u,v € Tp, with Ny = (x,, t,) and N, = (x,, t,).

If there were a A\(D,)-invariant isomorphism % : N, — N, then
P(xy) = xy for some unit w.

But for ¢ to be A\(Dp)-invariant, then looking at how f = t; acts
one would need that —uw = —vw (mod n) which is impossible
since u # v. O

[Note: We utilize the fact that Hy = Hps as Hopf-algebras iff
there is a A(G)-invariant isomorphism from N to N'.]



Our next question is, what about the potential isomorphisms that
may exist between the Hy, as K-algebras?

For this, we begin by constructing a basis for Hy, which will allow
us to analyze the basic structure of them as rings.



For ue T, let
Ny, = ((Xv ¢(u+1,1))) (ta ¢(O,—u))>
= <XLI7 tu>
and we note that N_1 = p(D,) and Ny = A(D,).

More generally, by [3, Corollary 1.13] we have, for any
N, € H(D,), that NP = Centg(N,) = N_,.



As to the case where n is even. We can utilize the enumeration
discussed earlier this week.

Those N where Normg(N) < W(Xo, Yo), can be parameterized as
Ny, where u € T and v =1, and, if 8|n also for v = 5 + 1 where
Nyi1= N, € H(Dp).

For our purposes, the we can focus on how A(D,) acts on the
characteristic index 2 subgroup which we can denote K, , = (ky.v).
For r = A(x) and f = A\(t) we have

Proposition
A(Dp) = (r,f) acts on K, = (ku,,) as follows:
rku”,r*1 = kl‘l/,v

fku”/fil = kllll’v



With this in mind, we can establish the following:

Theorem

If n even, and Normg(N) < W(Xo, Yo) where N = N,,, forue T,
and v =1 orv = 35+ 1 one has that there is no \(D,) invariant
isomorphism 1) : Ny, ; — Ny, v, unless up = up and vi = va.

Proof.
If Ku;,v; = (ku;,;) are the index 2 characteristic subgroups then any

such ¢ : Ny, vy — Nuy,v, must map ky, v, — ky, , for some

w € U,. However, by virtue of how A(Dj) acts, this would require

ViW = vow

upw = uw

which, since w € U, implies u; = up and vi = vy ]



Corollary

For n even, and N such that Normg(N) < W(Xo, Yo) no two of
the resulting fixed rings (L[N])P are isomorphic as Hopf-algebrs.



For those N where Normg(N) < W/(Xi, Y1), we have that
N = N, , where v € T,and r € Z, — (2).

Again we can focus on how A(D,) acts on the characteristic index
2 subgroup which we can denote K, , = (ky ), specifically
For r = A(x) and f = \(t) we have

Proposition
A(Dp) = (r, f) acts on K, , = (ky,r) as follows:
rk"arril = k\‘//,r

fhoof t =k}



And in a similar fashion to the previous example, we can conclude
that

Theorem

For N, , as above, if vi # vo then N, ,, is not A\(Dp)-isomorphic
to N, r, and therefore the resulting fixed rings are not isomorphic
as Hopf algebras.



For later reference, we can determine N, N p(D,) as this
determines G(Hp,).

Proposition
For Ny, = (xy, ty,) € H(Dp) we have

N, 01 p(Dn) = (<E* )

n
ged(u+1,n)

which equals (x*7 ) a cyclic group of order gcd(u + 1, n).

Notation: As we will use it throughout the subsequent discussion
we set d, = ged(u + 1,n) for u € T, and also define m, = .



Basis for Hy,

For a given regular N normalized by A(G), a basis for

Hy = (L[N])€ can be given that is universal in that it is defined
for any L/K and N.

Proposition

Let a € L be a normal basis generator for L/ K with the property
that tr(a) = 1. Let N be a regular subgroup of B = Perm(G)
which is normalized by A\(G). If for each n € N we define

=Y gla)r(g)n(g) !

geG

then the set {v,} is a basis for Hy = (L[N])®.



Proof:

We begin by verifying that each v, lies in H.

Let t € G and observe

t(v) = D t(g()A(t)A(g)nA(g) " A(t)

gei

= (tg)(a)A\(tg)nA(tg) "

geiG

= \/n
so that v, € H.

Note that ve, = ey where ey is the identity of N.



As there are |N| = |G| = dimy(H) different v,, we prove that they
are a basis for H by proving linear independence. For
computational convenience let

7t (m) = {(g.n) € G x N | X(g)n\(g)™" = m}

and suppose now that Zne,v cnvp = 0 for ¢, € k, that is

0=> > cng(a)M(g)n\(g) ™"

neN geG

= Z Z Cng(a) m

meN \ (g,n)er—1(m)

which means that for each m € N we have
> cagla)=0 (1)
(g,n)em=1(m)

but does this imply that each ¢, in this sum is.zero?



Since A\(G) normalizes N then each A(g) acts as an automorphism
of N.

As such, if (g, m), (g, n2) € 7~1(m) then one must have n; = n,
and therefore, for all the (g, n) € 7=1(m), the g's are all distinct.

As such the left hand side of (1) is a linear combination of distinct
g(a) which means that for each (g, n) € 7=1(m) one has ¢, = 0.

And since this holds true for all m € N then all ¢, = 0.
O



We have complete information on how A\(D,) = N; conjugates
elements of N, and thus may start constructing the v, bases for
each n=t/x, € N,,.

We define F = L{") and for a a normal basis generator of L/K, we
define 8 = tr jp(a) = > 4 s rP(a).

We also observe that 1 = try /() = tre/k(tre(a)) = B+ £(B)

which we will use below.

Notation: As we will use it throughout the subsequent discussion
we set d, = ged(u+ 1, n) for u € T,, and also define m, = diu.



For x{, € N, we have

||
M"‘

S (Frrt) et

7
l—lO

3 (rb(a))xt + (frb(a))xy

—ﬁwﬂ)v+ﬂmﬁ(»*”
= Bxb + F(B)xa
= fx+ (1= B)xa ™

o
o

and we observe that, Vi = xJ if and only if j = —uj which is
equivalent to j(u + 1) =0 (mod n), namely j € (m,). i.e.
Ny N p(Dy).



For t,xi, € N, we have

1
Vg = D D (FrP(a)(FPr?)tuxd (For®) !

-
o
—~~
Q
N
=
o
—~
~
S
:Xg .
N
o |
o
—~
>
o
—~~
Q
N—r
N—r
—~
>
o
N—r
~
S
::X\ .
—
)
o
N
I
_

Looking at the coefficients and group element exponents in the
above sum, we see the appearance of j — b(u + 1) and
b(u+ 1) — uj as b varies over Zi,.



Proposition

For m, = - as defined earlier, if b= b" (mod m,) then
Jj— b(u+1) =j— b (u+1) (mod n), and
b(u+1)—uj=b(u+1)— u (mod n).

As such, if we define W, ={t € Z, | t = e (mod m,)} for
e=0..my—1then Z, = Wo U Wy ---U W, _1, where, in fact,
Wy = <mu) and W, = Wy + e.

For (r™) < Gal(L/K) and Fy, = L™™) let
v = trye, (@) = Xiew, r'(@).



We have then:

and ultimately

n—1
Ve o d = Z rb(a)tux[,_b(uH) + frb(a)tuxf(”+l)_uj

my—1 )
= D retwd 4 S () Y
e=0



Another worthwhile point to consider is that since 3 = tr; /r(a),
then F = K(8) and f is actually a normal basis generator of F/K
where f(8) =1— 5.

As such irrk(B) = x> + ax + s, and since f(3) = 1 — 3 then we
must have a = —1 so that 8 = 1EVi—ds V21_45.

Similarly, since (r™) is characteristic in (r) then (r™ )< Gal(L/K).

As such, since v = tr; r, () then 7y is a normal basis generator of
qu/F and qu = F(’y)



If n = p a prime, then a bit of simplification takes place in that
Tp = {£1} where u = —1 still corresponds to the group ring
H p.y and u =1 corresponds to the canonical non-classical

P( H

structure Hy(p,).

And in particular, for u = 1 we have di = gcd(2,p) =1 and
my =p/l=psothat Fg, =L, i.e. v=a and

vy = Bx + (1 - B
p—1 ] p—1 ]
Ve = ré(a)tixd % + Z F(re(a))tixie™

e=0

o
I
<}



Multiplying Basis Vectors of Hy,

Let us consider how these basis elements multiply with each other.
For example

Vg - Vag = (B + (1= B ) (Bx + (1 — B)x, )
= B4 B BYTR 4 B - B+ (1 - B Y

which we can write as a linear combination of the other basis
elements, specifically

Vi Vak = (1- S)VX{;-H( =SV, w5V, ek SV, ke

an immediate consequence of which is that Vi and v,x commute
with each other, which isn't terribly surprising “of course.



A subtle point to observe is that some of the 'n" in the v,, above
may be duplicates.

For example, if u = —1 then
Vl; . VXL}f = (1 — S)Vx{;+k — SVXU—u(j+k) + SVX{.,7Uk + SVXL/jfuj
= (]_ — S)VX{’+/< — SVX,(,HH + SVX{I+k + SVX5+J'

which is basically reflecting the fact that v; = xil and so
—1
X xk = xJ_Jgk of course.

More generally, v, = n if and only if n € NN p(G).



In particular, we recall that v ; = ﬁx{; +(1- B)xu_uj = xl, if and
only if j = —uj (mod n) which is equivalent to j = 0 (mod m,).

And applied to {j + k, —u(j + k),j — uk, k — uj} we have

J+k=—u(j+ k) (mod n) <+ j+ k=0 (mod m,)
J+k=j—uk (mod n) < k=0 (mod m,)
j+k=k—u (mod n) < j=0 (mod m,)

—u(j+ k) =j — uk (mod n) <» j =0 (mod my)
—u(f+k)=k—u(
Jj—uk =k —uj (mod n) < j =k (mod my)

mod n) <> k =0 (mod m,)

which determines how the expression of v ; - vi« above condenses:



The next product for Hy, to consider is this

Ved Vet =( 22 1 (’Y)tuXJ clutd) 4 Z f(re(y))tuxu ”J+C(”+1))
utu u C:0
mest e(u —uk+e(u
T T R (O I

my—1my—1

_ 2: }: ( ) ( ) k—j+(c—e)(u+1)

c=0 e=0
my—1my—1

00 () e
c=0 e=0

my—1my—1

YN F(re(y))re(y) e et
c=0 e=0

my—1my—1

i 22% 2;% f(rc(v))f(re(W))Xﬁﬁ_”k_(C—exu+1)

which can also be condensed a bit, and written as a linear
combination of the other v,,.



We have

my—1
Vid  Veuxk = hZ::O (ah + ba)V, k-jinturt) + ARV, ui-vk—nus1)
my,—1
+ Z PhV ktuj—h(u+1) + PRV —uk—j+h(u+1)
h=o0 u

where

tre, /e (r"(7)7) = an + bwB
tre, r(F(r"(v)7)) = F(tre, /e (r"(4)7)) = (an + bn) — bf
tre, )F(r "()F(Y)) = pn



The issue is that the values of ay, by and pp are dependent on the
extension L/F /K, although one can show that:

n:z_ol tre, r(rf(v)y) = B2 = —s+ 8
";go trr, e (F(F () = (1— B = (1—s) —
my—1

hZ:jO tre, /r(r"(N)F(7)) = BL - B) = s

and so



The other products, and their representation as (fairly simple!)
linear combinations of the v, are

Ve " Vid = (1- s)th5+j + (_S)VtX;u(k+j) + SV i uk + SVik—ui

Vx{; . Vtuxﬁ = (1 — S)Vtxlljfj + (—S)Vtxu—u(k—j) + SVtXLijuk + Sth‘/jJruj

and the symmetry of the above expressions in j and k leads to a
number of identities

Veux " Vi T Veuxd, Ve

j © Vyk
J X,

Vid " Vtuxk = Vixr

Ve, t Vg = Ve

Vi Ve = Ve



In summary:

Vi " Vak = (1 — S)VX{;Jrk — SvXu_u(j+k) + SV, j—uk + SV, k—uj

my—1
vfuxi . Vtuxl‘l( = hzo (ah + bh)VX‘}j—jJrh(qul) + ahvxllllj*llkfh(wrl)
my—1
+ D PRV ktu—hut1) + PRV —uk—jth(ut1)
h:() XLI XLI
Vtqu . VXJU- = (1 — S)VtXL11<+j + (—S)VtXU_u(k+j) + SVtX{I—uk + SVtXLljfuj

Vx[, “Vixk = (]_ — S)Vtxff_j + (—S)Vtx;u(kfj) + SVtXu—j—uk + Svtx,’f+”j



This leads to one immediately interesting (to me at least)
consequence about the structure of Hy,.

Theorem

If we define HR,“ = Span({v,; }) and H,{,u = Span({ vy, }) then the
above facts about how the basis elements multiply implies that
Hpy, can be decomposed as a Zj graded ring Hy, = HR,U @ H,{,u.

Proof.

By the above product table for the v, one sees that

H,’VUHfVU - H,'VJ:J. Indeed, one has that v, Vg =V, Jj SO that
ve,Hy, € Hy, and therefore vy, HY = Hy, . O



A Worked Out Example in Degree 6

For K = Q we construct a Galois extension L/K with
Gal(L/K) = Ds. First, define p(x) = x3 — 2 € K[x] which has
roots w, (w, (2w where w = v/2 and ¢ = e5". We have that
Gal(L/K) = (r,f) where

so that |r| = 3 and |f| = 2 and Gal(L/K) = D3. One may verify

that
L2
Oz:§ E E C’WJ

i=0 j=0

is a normal basis generator for L/K where tr; /() = 1.



As F = L") then g = tri/r(a) = ¢ + 1 is a normal basis generator
for F/K where trp (8) = 8+ f(8) =1 and
irrg /k(8) = x* — x — 1 which means F = Q(v=3).

Now, since T3 = {1, —1} then R(Ds, [Ds3]) = {\(D3), p(D3)} so
the 'interesting’ Hopf algebra action is by Ny = A(Ds)
corresponding to u =1 € T3 so that d; = ged(u+1,3) =1 and
m1 = 3 and so, as observed earlier, Fy, = L and v = a.



The "v,' basis for Hy, is

1 1 1 1 1 1 1
Vi, = <—§ W2ﬂ+§ + §W67 W/3> tix + <7§ wp + 3 +§W2B7 3 W2> t1x12

2 1
W/3—§W2+§> t1

1 2 1 1 1
25**W/3+ W+3> t1X1+<§Wﬂ+§W2ﬂ*§W2+§> t1x1?



Using MAPLE we can compute the different 'trace pairings’ for the coefficients in the
different products.

trL/,:(rO(oz)(x) =ag+ b8 = %5 + %B
1 -1

trp(r(a)a) = a1 + bif = 3308
1 -1

tre(ri(a)a) = a2 + bafi = 2 + =5

tryr(F(r®(@)e)) = (a0 + bo) — bof = _gﬁ
trye(F(ri(@)e)) = (a1 + b1) — b1B = %/g

tryp(F(rP(@)a)) = (a2 + b2) — boff = %ﬁ

w| o

try ¢ (r(a)f(a)) = po

trye(rH (@) (@) = p1

Wl Wl

tryr(rP(@)f (@) = p2



So for example, we have the simplest product, namely the commuting basis elements v,
and v,z.
Vxi Vx12 = Vxl2 CVx = 7Vx{) + fo + Vi

and the others can be 'clustered’ given the similarities one sees:

Vg Vg = —Viq + 2VX?
Vig " Vg = V2 + 2VX10
V2 Vi = ~Viha +2vy
Viixy " Vg = —Viix + 2Vt1
Vg thxf = 7Vt1x12 + 2Vl’l
thxf : Vxlz = _Vt1X12 +2vy

and

Ve - Ve = 5/3VX? - 1/3VX12 —1/3vy
Vit Vg = 5/3v — 1/3VX? - 1/3VX12
Ve Vi =5/3vq = 1/3v,0 = 1/3v,e
Vi Ve = 5/3VX12 — 1/3VX? —1/3vy
Vig * Ve = 5/3VX12 - 1/3VX{) —1/3vy



and

Ve Vg = —T7/3v,0 +5/3v,2 +5/3vy
Ves? Vep2 = —T/3V0 +5/3v,2 +5/3v
2 Vi = —7/3vq + 11/3VX1° - 1/3VX12

Vi Vi = —1/3ve +11/3v,0 — 1/3vy

th

and
V2 Ve = Viix
Ve Vg = Viax
Vg =Vt = thxf
Vg - V><12 = Vt1><12
and
Vxl2 ) vt1x12 = Vg + Vt1x12 + Viixg
Vi x VX12 =—Vy + thxlz + Vi
Vi "V = TV + Viyx2 + Viixg

Vig " Vi = — Vg t+ thxlz + Vig



The goal is to show that even though none of the Hy, are
isomorphic as Hopf-algebras, they are isomorphic as K-algebras.

An ad-hoc approach/example in the D3 case is to utilize the v,
basis to construct matrix units, and therefore an explicit
isomorphism (K[A(D3)])?* = Hy, — Hy_, = K[p(D3)].

This is made easier by the knowledge of the multiplication table for
the {v,} we just explored.



We know that K[D3] =2 K x K x My(K) is the Wedderburn
decomposition so the difficulty is in finding a 'copy’ of Ms(K)
inside Hp,, namely a set of matrix units.

Consider

1
1= 3(ve —ve)

1
h1,2 = E(th - Vt1X1)
h2,1 = §(Vf1 - thxlz)

1
h22 = 5 (Ve — vx)

which we assert correspond to the elementary 2 x 2 matrices

o oo o oo 3



If the character values of D3 lie in K then the orthogonal

idempotents
xi(1 _
= it > xile e
g€Dhs

lie in K[Dj].

There are two 1-d characters x1 and x2, where x1(g) = 1 for all
g € D3, xa(xi) = (—=1)", x2(t1x)) = 0, as well as the 2-d character

X3 where x3(1) = 2, x3(x1) = —1,X3(x12) =1, Xg(tlx{) =0



In particular we obtain

1
€y = 6(t1X12 + tix1+ 161 +Xf + x1 + 1)

1
e, = 6(—t‘1x12 —tixy — t1 -I-Xl2 +x1 + 1)

1
ew =52 x - x})

but what is quite extraordinary is how these may be represented in
terms of the v-basis, namely that they actually reside in
Hi, = (K[M(Ds)])™.



Specifically

1
ey = ~(txd +tixa +t+xF +x + 1)

6
= g(vtle + Viix + Vi + Vxl2 + Vg + Vx{))
1 2 2
€y, = 6(—1.‘1X1 —tx1 —t+x7 +x1+ 1)
1
= 6(_Vt1x12 — Vi — Vg VX12 + Vg + fo)
1 2
e = 32— )
1

= *(2VX{J — Vy, — V,2)

3 8!

and the idempotent e,, is used to obtain the h; ;.



What we have then is that Hy, = H) (expressed in its Wedderburn

form as K x K x Maty(K)) has basis {e,, e\,, h1,1, h12, o1, ha2},

which are all expressed in terms of the v, basis vectors, explicitly
171

d
(a, b, |:Z f:|) > aey, + bey, + chy 1+ dhyo + eha 1 + ftho o

where, for example, we can see where the identity element of the
direct product gets mapped

10
(1.1, [0 1]) e T e Tt e = v

which is congruous with the observation earlier that v,o is the
identity element of Hy,.



As an interesting computational aside, the sub-algebra
HY, = Span({vX{}) can also be written as

Span({ey, + ey,, h1,1, h22}), namely as those elements of the form

G.a]g )

and similarly Hll = 5P3”({thx{}) = Span({(ey; — ex,), 2, h21})

which equals
0 ¢
(37 —a, [d 0} )



Going further, we can view Hy, = H) as a group ring in a kind of
natural way. One may show that in M>(K) one has matrices

0 1
=[5
01
iy
which can be shown satisfy the equations X3 =/, T? =/ and
XT = TX? so that (X, T) = D3 and therefore have elements

(units) of the Wedderburn decomposition of Hy, which also satisfy
these relations, namely hx = (1,1, X) and hr = (1,1, T).



What we would like is to show that

{1, hx, (hx)?, ht, hThx, h(hy)?} =
{(X,1,1),(1,1,X), (1,1, X3), (1,1, T), (1,1, TX), (1,1, TX?)}

are yet a different basis for Hp;.

As it turns out, one must adjust ht, and set it to be (1,—1, T) in
order to achieve linear independence, which yields the set

{(1,1,0),(1,1,X),(1,1,X?),(1,-1, T), (1, -1, TX), (1, -1, TX?)}

which /s linearly independent.



The five 2 x 2 matrices X, X2, T, TX, TX? cannot be a linearly
independent subset of Ma(K). And in terms of the basis
{exirexs, M1, hi2,ho1, ho o} one has

1=1e, +1ey, +1h1 1+ 0h12+0ho1+ 1ho>
hx = ley, +1ey, +0h1 1+ 1hio + (=1)hp1 + (—1)ho2
(hx)? = ley, + ley, + (—1)h11 + (—1)h1o + 1ot + Oho o
ht =1ley, +(—1)ey, +0h11 + 1h1 2+ 0hp1 + 1hoo
hrhx = le,, + (—=1)ey, + (—=1)h11 4+ (=1)h12 + Ohp1 + 1hoo
hr(hx)? = ley, + (—1)ey, + Lhig + O0hio + (—1)ho1 + (—1)hop

and, for reference, we can represent hx and ht in terms of the v
basis.



2 1 1 1 L

ix =gV 3%~ gV~ gV T 3Vag
5 1

hT = gvtl + 6Vt1X1



So we have (in a kind of bare-handed way) demonstrated the
following:

Theorem
If D3 = (x,t | x> = t? = 1,xt = tx?) then there is a K-algebra
isomorphism v : K[D3] — Hp, given by 1(x) = hx and 1(t) = hr.



Idempotents in Hy

The similarity of the expression of the idempotents expressed in
terms of the group elements and the v basis, e.g.

1
ey = g(tle +tixi 4+t 4+ X2+ x +1)

= 7(Vt1x12 T Vg T Ve + Vx2 + Vg + Vx?)

6

makes one wonder if there is, more generally, a direct analogue of
the e, framed in terms of the v,,?

Conjecture/Question: If Hy contains all the central idempotents as
the group ring H, does that imply that Hy = H,?



Consider the following.

Definition
For N € R(G) and {v,} the basis for Hy = (L[N])*(©) let

vy = X(:,T) > x(n7 v,

‘ neN

for each irreducible character x : N — K of N.

We model this on the usual idempotent defintion
e =X Sy x(nY)n € KIN].

The first question is whether these v, are similarly orthogonal
idempotents. Under some assumptions on x we can show more in
fact.



Theorem

For N € R(G) and vy, as defined above, if x is real valued and all
character values lie in K, and x(\(g)n\(g)~t) = x(n) for all

ne N and g € G then v, = e,.

Proof:

By assumption x(n~1) = x(n) = x(n) and so:

_ x(en) -
x = |NIII ZX(” 1)Vn

neN

- e” > X Me(@)A(g)nr(e)
nENgEG

= M) $™ ga) 3 x(n DM @)mA(e)

|N| geG neN

_ -1

-4 ZG nEZNX (®)

=X|N| > g(a) Y- (Mg @) M)A (e) !

geaiG neN



where the second to last line is due to the assumption that
tri ;k(a) = 1, which completes the proof.



As a corollary, we have the following.

Corollary

For N € R(G) and v, as defined above, if x is real valued and all
character values lie in K and the action of A\(G) on N is by inner
automorphisms, then v, = e,

Proof.

If conjugation by every A(g) induces an inner automorphism of N

then all conjugacy classes are preserved and therefore all character
values are preserved. []



As a result, we have some immediate examples.

If G is such that all its irreducible character values are real and lie
in K then for N = A\(G), p(G) one has v, = e,.

Of course, the upshot of this is that for these N the Hopf algebras
Hpy contain the same orthogonal idempotents as does K[N] itself

(and therefore has identical Wedderburn decomposition to that of
KINI?)



Corollary

If N € R(G) and x is a real valued irreducible character of N such
that all values of x lie in K and x(\(g)n\(g)~t) = x(n) for all
ne N and g c G then e, € Hy.



For D, the question is, for what irreducible character(s) x do we
have x(A\(g)nA(g)~1) = x(n) for every n € N where N € H(D,)?
Given N, € H(D,) where N, = (x,, t,) and where A\(G) = (r,f)
acts by
rxur_1 = Xy
rtyrt = tuxu_(u+1)
Fx, ft=x "

ft,f~t =t,

we look at whether each x is A(G)-invariant.



If nis even then the 1-d irreps are x1, X2, X3, and xa where

X tu X,
X1 1 1
X2 1 -1

xs | (1Y | (=1)
xa | (1Y | (=1y*

and for n odd, x3 and x4 aren’t defined.

Clearly x1 and x2 are A(G)-invariant, and for n even, u € T, must
be odd, and so u+ 1 must be even and so j — (u+ 1) = (mod 2)
and j = —ju (mod 2) and so x3 and x4 are as well.



For the two dimensional irreps x"" where x"(t,x}) = 0 and
Y(xd) = 2cos( 2h”) for 0 < h < 3 the question is whether

2hj —2huj
os< ﬂT) = cos< u17r>
n n

And here is where a problem arises, namely the above equality
holds (for all h € (0, 5)) only if u= #£1, i.e. for Ny = A(D,) and
N_1 = p(Dp).

But at least we can conclude that Hy = Hy, = Hy_, = H, for all
n, not just n = 3, or even n a prime necessarily.

forue T,?



Questions:

(1) Does the fact that e, € Hy, = H) for each irreducible
character x imply that Hy, has the same Wedderburn
decomposition as Hy , = H, = K[p(D»)]?

(2) For those irreducible characters x which are not
A(G)-invariant, are the v, idempotent? central?
(even if they don't lie in K[p(D,)]?)



Thank you!
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