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Hopf-Galois Theory

An extension L/K is Hopf-Galois if there is a K -Hopf algebra H
and a K -algebra homomorphism µ : H → EndK (L) such that

I µ(ab) =
∑

(h) µ(h(1)(a)µ(h(2))(b)

I LH = {a ∈ L | µ(h)(a) = ε(h)a ∀h ∈ H} = k

I µ induces I ⊗ µ : L#H
∼=→ EndK (L)
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As is known, the Hopf-Galois structures on a Galois extension L/K
with G = Gal(L/K ) are in 1-1 correspondence with the regular
subgroups N ≤ B = Perm(G ) such that λ(G ) ≤ NormB(N), where
the Hopf algebra which acts is HN = (L[N])λ(G) the fixed ring
under the simultaneous action of G on scalars and on N.

This implies that |N| = |G | but does not necessarily force N to be
isomorphic to G , and indeed we may define

R(G ) = {N ≤ B | N regular and λ(G ) ≤ NormB(N)}
R(G , [M]) = {N ∈ R(G ) | N ∼= M}

where [M] represents any group of cardinality |G |.
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Here however, we will, in fact, consider R(G , [G ]) as this includes
some primordial examples of the N which may arise.

For all G , we have N = ρ(G ) ∈ R(G , [G ]) since λ(G ) centralizes
ρ(G ) and thus certainly normalizes it, where Hρ(G)

∼= K [G ] the
group ring, i.e. the canonical action by virtue of G being the
Galois group of L/K .

If G is non-abelian then λ(G ) 6= ρ(G ) and since λ(G ) obviously
normalizes itself we have λ(G ) ∈ R(G , [G ]) where Hλ(G) = Hλ is
the so-called canonical non-classical structure.
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The relationship we focus on, as exemplified by λ(G ) and ρ(G ), is
that

NormB(ρ(G )) = NormB(λ(G )) = Hol(G )

which leads to the discussion of the multiple holomorph of G .
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For λ(G ) ≤ B = Perm(G ), one can ask for what other regular
subgroups N ≤ B have the same normalizer, (holomorph) as G ,
namely Hol(N) = Hol(G ).

The equality implies that N ≤ Hol(G ) and λ(G ) ≤ Hol(N).

If we restrict our attention to those N which are isomorphic to G
then N is a conjugate of λ(G ) by regularity.

So for such an N, where τ ∈ B is such that τλ(G )τ−1 = N then

τNormB(λ(G ))τ−1 = NormB(τλ(G )τ−1)

= NormB(N)

= NormB(λ(G ))

which means τ ∈ NormB(Hol(G )), and the converse is true as well.
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Let us make a few definitions:

NHol(G ) = NormB(Hol(G )) = NormB(NormB(λ(G )))

the multiple holomorph of G

T (G ) = NHol(G )/Hol(G )

H(G ) = {N regular | N ∼= G and Hol(N) = Hol(G )}

We observe that H(G ) ⊆ R(G , [G ]), and the virtue of this is that
H(G ) (for many different G ) may be readily enumerated.
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We have the following basic fact(s) about T (G ) and H(G ).

Proposition

Given the above definitions:

OrbT (G)(λ(G )) = H(G )

= {N regular | N ∼= G and N / Hol(G )}
= OrbT (G)(N) for any N ∈ H(G )

and in particular |T (G )| = |H(G )|.
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The multiple holomorph of finite abelian groups was determined by
G.A. Miller [4] in the early 1900’s and what was utlimately
discovered was that |T (G )| is trivial if G has odd order, and
|T (G )| ≤ 4 in general.

Indeed, for many groups |T (G )| = 2, i.e. H(G ) = {λ(G ), ρ(G )},
for example, if G is a non-abelian simple group, or complete.

Since then T (G ) has been computed for other classes of groups,
by Caranti for perfect groups [1], and p-groups of class two [2],
and the presenter [3] for the case of dihedral groups.

And indeed, for our discussion, we shall focus on the case where
G ∼= Dn.
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We examine the case where G ∼= Dn for n ≥ 3 since both H(G )
and T (G ) are worked out in detail in [3].

We present the n-th dihedral group as follows:

Dn = {x , t| xn = 1, t2 = 1, xt = tx−1}
= {1, x , x2, . . . , xn−1, t, tx , tx2, . . . , txn−1}

and we also have a presentation of Aut(Dn).
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Proposition

For n ≥ 3 with Dn = {taxb|a ∈ Z2; b ∈ Zn} and letting Un = Z∗n,

(a) Aut(Dn) = {φi ,j |i ∈ Zn; j ∈ Un} where

φi ,j(t
axb) = tax ia+jb

φi2,j2 ◦ φi1,j1 = φi2+j2i1,j2j1

φ(0,1) = I the identity

(b) Aut(Dn) ∼= Hol(Zn)
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The groups in H(Dn) are subgroups of Hol(Dn) where typical
elements have the form

(taxb, φi ,j)

and if we make the identification ρ(t ix j) = (t ix j , I ) ∈ Hol(Dn)
then since λ(Dn) is the centralizer of ρ(Dn) we have

λ(t ix j) = (t, φ(0,−1))
i (x , φ(2,1))

j

.
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The description of H(Dn) is given in [3, Theorem 2.11]

Theorem

H(Dn) = {〈(x , φ(u+1,1)), (t, φ(0,−u))〉 | u ∈ Υn}

where
Υn = {u ∈ Un | u2 = 1}

the group of exponent 2 units mod n.
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The size and structure of the group Υn is basically determined by
the number of quadratic residues of n, which in turn is keyed to
the number of prime divisors of n vis-a-vis the Chinese Remainder
Theorem, and is given below.

Lemma

For n = 2epf11 p
f2
2 · · · pfrr , Υn

∼=


(Z2)r e <= 1

(Z2)r+1 e = 2

(Z2)r+2 e ≥ 3
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For u ∈ Υn let

Nu = 〈(x , φ(u+1,1)), (t, φ(0,−u))〉
= 〈xu, tu〉

and we note that N−1 = ρ(Dn) and N1 = λ(Dn).

More generally, by [3, Corollary 1.13] we have, for any
Nu ∈ H(Dn), that Nopp

u = CentB(Nu) = N−u.
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As we wish to consider the fixed rings HN = (L[N])G where the G
acting on N is λ(G ) of course, we have the following, which also
comes from [3]. If we let r = x1 = λ(x) and f = t1 = λ(t) then

Proposition

λ(Dn) = 〈r , f 〉 acts on Nu = 〈xu, tu〉 as follows:

rxur
−1 = xu

r tur
−1 = tux

−(u+1)
u

f xuf
−1 = x−uu

f tuf
−1 = tu
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With this we can establish the following.

Theorem
For each Nu ∈ H(Dn), none of the HNu = (L[Nu])Dn are
isomorphic as Hopf algebras.

Proof.
Let u, v ∈ Υn with Nu = 〈xu, tu〉 and Nv = 〈xv , tv 〉.

If there were a λ(Dn)-invariant isomorphism ψ : Nu → Nv then
ψ(xu) = xwv for some unit w .

But for ψ to be λ(Dn)-invariant, then looking at how f = t1 acts
one would need that −uw ≡ −vw (mod n) which is impossible
since u 6= v .

[Note: We utilize the fact that HN
∼= HN′ as Hopf-algebras iff

there is a λ(G )-invariant isomorphism from N to N ′.]
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Our next question is, what about the potential isomorphisms that
may exist between the HNu as K -algebras?

For this, we begin by constructing a basis for HNu which will allow
us to analyze the basic structure of them as rings.
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For u ∈ Υn let

Nu = 〈(x , φ(u+1,1)), (t, φ(0,−u))〉
= 〈xu, tu〉

and we note that N−1 = ρ(Dn) and N1 = λ(Dn).

More generally, by [3, Corollary 1.13] we have, for any
Nu ∈ H(Dn), that Nopp

u = CentB(Nu) = N−u.
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As to the case where n is even. We can utilize the enumeration
discussed earlier this week.
Those N where NormB(N) ≤W (X0,Y0), can be parameterized as
Nu,v where u ∈ Υn and v = 1, and, if 8|n also for v = n

2 + 1 where
Nu,1 = Nu ∈ H(Dn).
For our purposes, the we can focus on how λ(Dn) acts on the
characteristic index 2 subgroup which we can denote Ku,v = 〈ku,v 〉.
For r = λ(x) and f = λ(t) we have

Proposition

λ(Dn) = 〈r , f 〉 acts on Ku,v = 〈ku,v 〉 as follows:

rku,v r
−1 = kvu,v

f ku,v f
−1 = kuu,v
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With this in mind, we can establish the following:

Theorem
If n even, and NormB(N) ≤W (X0,Y0) where N = Nu,v for u ∈ Υn

and v = 1 or v = n
2 + 1 one has that there is no λ(Dn) invariant

isomorphism ψ : Nu1,v1 → Nu2,v2 unless u1 = u2 and v1 = v2.

Proof.
If Kui ,vi = 〈kui ,vi 〉 are the index 2 characteristic subgroups then any
such ψ : Nu1,v1 → Nu2,v2 must map ku1,v2 7→ kwu2,v2 for some
w ∈ Un. However, by virtue of how λ(Dn) acts, this would require

v1w ≡ v2w

u1w ≡ u2w

which, since w ∈ Un implies u1 = u2 and v1 = v2.
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Corollary

For n even, and N such that NormB(N) ≤W (X0,Y0) no two of
the resulting fixed rings (L[N])Dn are isomorphic as Hopf-algebrs.
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For those N where NormB(N) ≤W (X1,Y1), we have that
N = Nv ,r where v ∈ Υn and r ∈ Zn − 〈2〉.

Again we can focus on how λ(Dn) acts on the characteristic index
2 subgroup which we can denote Kv ,r = 〈kv ,r 〉, specifically
For r = λ(x) and f = λ(t) we have

Proposition

λ(Dn) = 〈r , f 〉 acts on Kv ,r = 〈kv ,r 〉 as follows:

rkv ,r r
−1 = kvv ,r

f kv ,r f
−1 = k−1v ,r
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And in a similar fashion to the previous example, we can conclude
that

Theorem
For Nv ,r as above, if v1 6= v2 then Nv1,r1 is not λ(Dn)-isomorphic
to Nv2,r2 and therefore the resulting fixed rings are not isomorphic
as Hopf algebras.
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For later reference, we can determine Nu ∩ ρ(Dn) as this
determines G (HNu).

Proposition

For Nu = 〈xu, tu〉 ∈ H(Dn) we have

Nu ∩ ρ(Dn) = 〈x
n

gcd(u+1,n)
u 〉

which equals 〈x
n

gcd(u+1,n)

−1 〉 a cyclic group of order gcd(u + 1, n).

Notation: As we will use it throughout the subsequent discussion
we set du = gcd(u + 1, n) for u ∈ Υn, and also define mu = n

du
.
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Basis for HNu

For a given regular N normalized by λ(G ), a basis for
HN = (L[N])G can be given that is universal in that it is defined
for any L/K and N.

Proposition

Let α ∈ L be a normal basis generator for L/K with the property
that tr(α) = 1. Let N be a regular subgroup of B = Perm(G )
which is normalized by λ(G ). If for each n ∈ N we define

vn =
∑
g∈G

g(α)λ(g)nλ(g)−1

then the set {vn} is a basis for HN = (L[N])G .
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Proof:

We begin by verifying that each vn lies in H.

Let t ∈ G and observe

t(vn) =
∑
g∈G

t(g(α))λ(t)λ(g)nλ(g)−1λ(t)−1

=
∑
g∈G

(tg)(α)λ(tg)nλ(tg)−1

= vn

so that vn ∈ H.

Note that veN = eN where eN is the identity of N.
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As there are |N| = |G | = dimk(H) different vn we prove that they
are a basis for H by proving linear independence. For
computational convenience let

π−1(m) = {(g , n) ∈ G × N | λ(g)nλ(g)−1 = m}

and suppose now that
∑

n∈N cnvn = 0 for cn ∈ k, that is

0 =
∑
n∈N

∑
g∈G

cng(α)λ(g)nλ(g)−1

=
∑
m∈N

 ∑
(g ,n)∈π−1(m)

cng(α)

m

which means that for each m ∈ N we have∑
(g ,n)∈π−1(m)

cng(α) = 0 (1)

but does this imply that each cn in this sum is zero?
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Since λ(G ) normalizes N then each λ(g) acts as an automorphism
of N.

As such, if (g , n1), (g , n2) ∈ π−1(m) then one must have n1 = n2
and therefore, for all the (g , n) ∈ π−1(m), the g ’s are all distinct.

As such the left hand side of (1) is a linear combination of distinct
g(α) which means that for each (g , n) ∈ π−1(m) one has cn = 0.

And since this holds true for all m ∈ N then all cn = 0.
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We have complete information on how λ(Dn) = N1 conjugates
elements of Nu and thus may start constructing the vn bases for
each n = t iux

j
u ∈ Nu.

We define F = L〈r〉 and for α a normal basis generator of L/K , we
define β = trL/F (α) =

∑n−1
b=0 r

b(α).

We also observe that 1 = trL/K (α) = trF/K (trL/F (α)) = β + f (β)
which we will use below.

Notation: As we will use it throughout the subsequent discussion
we set du = gcd(u + 1, n) for u ∈ Υn, and also define mu = n

du
.



32/75

For x ju ∈ Nu we have

v
x ju

=
1∑

a=0

n−1∑
b=0

(f arb(α))(f arb)x ju(f arb)−1

=
n−1∑
b=0

(rb(α))x ju + (frb(α))x−uju

= trL/F (α)x ju + f (trL/F (α))x−uju

= βx ju + f (β)x−uju

= βx ju + (1− β)x−uju

and we observe that, v
x ju

= x ju if and only if j = −uj which is

equivalent to j(u + 1) ≡ 0 (mod n), namely j ∈ 〈mu〉. i.e.
Nu ∩ ρ(Dn).
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For tux
j
u ∈ Nu we have

v
tux

j
u

=
1∑

a=0

n−1∑
b=0

(f arb(α))(f arb)tux
j
u(f arb)−1

=
n−1∑
b=0

rb(α)rb(tux
j
u)r−b + (frb(α))(frb)tux

j
u(frb)−1

=
n−1∑
b=0

rb(α)tux
j−b(u+1)
u + frb(α)tux

b(u+1)−uj
u

Looking at the coefficients and group element exponents in the
above sum, we see the appearance of j − b(u + 1) and
b(u + 1)− uj as b varies over Zn.
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Proposition

For mu = n
du

as defined earlier, if b ≡ b′ (mod mu) then
j − b(u + 1) ≡ j − b′(u + 1) (mod n), and
b(u + 1)− uj ≡ b′(u + 1)− uj (mod n).

As such, if we define We = {t ∈ Zn | t ≡ e (mod mu)} for
e = 0..mu − 1 then Zn = W0 ∪W1 · · · ∪Wmu−1, where, in fact,
W0 = 〈mu〉 and We = W0 + e.

For 〈rmu〉 ≤ Gal(L/K ) and Fdu = L〈r
mu 〉 let

γ = trL/Fdu
(α) =

∑
l∈W0

r l(α).
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We have then:

α ∈ L

〈rmu 〉
vv

〈r〉

$$

γ ∈ Fdu

〈r〉/〈rmu 〉={r0,...,rmu−1}
uu

β ∈ F

〈f 〉

** K

and ultimately

v
tux

j
u

=
n−1∑
b=0

rb(α)tux
j−b(u+1)
u + frb(α)tux

b(u+1)−uj
u

=
mu−1∑
e=0

r e(γ)tux
j−e(u+1)
u +

mu−1∑
e=0

f (r e(γ))tux
−uj+e(u+1)
u
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Another worthwhile point to consider is that since β = trL/F (α),
then F = K (β) and β is actually a normal basis generator of F/K
where f (β) = 1− β.

As such irrK (β) = x2 + ax + s, and since f (β) = 1− β then we

must have a = −1 so that β = 1±
√
1−4s
2 .

Similarly, since 〈rmu〉 is characteristic in 〈r〉 then 〈rmu〉 /Gal(L/K ).

As such, since γ = trL/Fd
(α) then γ is a normal basis generator of

Fdu/F and Fdu = F (γ).
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If n = p a prime, then a bit of simplification takes place in that
Υp = {±1} where u = −1 still corresponds to the group ring
Hρ(Dp) and u = 1 corresponds to the canonical non-classical
structure Hλ(Dp).

And in particular, for u = 1 we have d1 = gcd(2, p) = 1 and
m1 = p/1 = p so that Fd1 = L, i.e. γ = α and

v
x j1

= βx j1 + (1− β)x−j1

v
t1x

j
1

=

p−1∑
e=0

r e(α)t1x
j−2e
1 +

p−1∑
e=0

f (r e(α))t1x
2e−j
1
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Multiplying Basis Vectors of HNu

Let us consider how these basis elements multiply with each other.
For example

v
x ju
· vxku = (βx ju + (1− β)x−uju )(βxku + (1− β)x−uku )

= β2x j+k
u + β(1− β)x j−uku + β(1− β)xk−uju + (1− β)2x

−u(j+k)
u

which we can write as a linear combination of the other basis
elements, specifically

v
x ju
· vxku = (1− s)v

x j+k
u
− sv

x
−u(j+k)
u

+ sv
x j−uk
u

+ sv
xk−uj
u

an immediate consequence of which is that v
x ju

, and vxku commute
with each other, which isn’t terribly surprising of course.
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A subtle point to observe is that some of the ’n’ in the vn above
may be duplicates.

For example, if u = −1 then

v
x ju
· vxku = (1− s)v

x j+k
u
− sv

x
−u(j+k)
u

+ sv
x j−uk
u

+ sv
xk−uj
u

= (1− s)v
x j+k
u
− sv

x
(j+k)
u

+ sv
x j+k
u

+ sv
xk+j
u

= v
x j+k
u

which is basically reflecting the fact that v
x j−1

= x j−1 and so

x j−1x
k
−1 = x j+k

−1 of course.

More generally, vn = n if and only if n ∈ N ∩ ρ(G ).
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In particular, we recall that v
x ju

= βx ju + (1− β)x−uju = x ju if and

only if j ≡ −uj (mod n) which is equivalent to j ≡ 0 (mod mu).

And applied to {j + k,−u(j + k), j − uk, k − uj} we have

j + k ≡ −u(j + k) (mod n)↔ j + k ≡ 0 (mod mu)

j + k ≡ j − uk (mod n)↔ k ≡ 0 (mod mu)

j + k ≡ k − uj (mod n)↔ j ≡ 0 (mod mu)

−u(j + k) ≡ j − uk (mod n)↔ j ≡ 0 (mod mu)

−u(j + k) ≡ k − uj (mod n)↔ k ≡ 0 (mod mu)

j − uk ≡ k − uj (mod n)↔ j ≡ k (mod mu)

which determines how the expression of v
x ju
· vxku above condenses.
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The next product for HNu to consider is this

v
tux

j
u
· vtuxku = (

mu−1∑
c=0

r c(γ)tux
j−c(u+1)
u +

mu−1∑
c=0

f (r c(γ))tux
−uj+c(u+1)
u )

· (
mu−1∑
e=0

r e(γ)tux
k−e(u+1)
u +

mu−1∑
e=0

f (r e(γ))tux
−uk+e(u+1)
u )

=
mu−1∑
c=0

mu−1∑
e=0

r c(γ)r e(γ)x
k−j+(c−e)(u+1)
u

+
mu−1∑
c=0

mu−1∑
e=0

r c(γ)f (r e(γ))x
−uk−j+(c+e)(u+1))
u

+
mu−1∑
c=0

mu−1∑
e=0

f (r c(γ))r e(γ)x
k+uj−(c+e)(u+1)
u

+
mu−1∑
c=0

mu−1∑
e=0

f (r c(γ))f (r e(γ))x
uj−uk−(c−e)(u+1)
u

which can also be condensed a bit, and written as a linear
combination of the other vn.
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We have

v
tux

j
u
· vtuxku =

mu−1∑
h=0

(ah + bh)v
x
k−j+h(u+1)
u

+ ahvxuj−uk−h(u+1)
u

+
mu−1∑
h=0

phvxk+uj−h(u+1)
u

+ phvx−uk−j+h(u+1)
u

where

trFd/F (rh(γ)γ) = ah + bhβ

trFd/F (f (rh(γ)γ)) = f (trFd/F (rh(γ)γ)) = (ah + bh)− bhβ

trFd/F (rh(γ)f (γ)) = ph
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The issue is that the values of ah, bh and ph are dependent on the
extension L/F/K , although one can show that:

mu−1∑
h=0

trFd/F (rh(γ)γ) = β2 = −s + β

mu−1∑
h=0

trFd/F (f (rh(γ)γ)) = (1− β)2 = (1− s)− β

mu−1∑
h=0

trFd/F (rh(γ)f (γ)) = β(1− β) = s

and so
mu−1∑
h=0

ah = −s

mu−1∑
h=0

bh = 1

mu−1∑
h=0

ph = s
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The other products, and their representation as (fairly simple!)
linear combinations of the vn are

vtuxku · vx ju = (1− s)v
txk+j

u
+ (−s)v

tx
−u(k+j)
u

+ sv
tx j−uk

u
+ sv

txk−uj
u

v
x ju
· vtuxku = (1− s)v

txk−j
u

+ (−s)v
tx
−u(k−j)
u

+ sv
tx−j−uk

u
+ sv

txk+uj
u

and the symmetry of the above expressions in j and k leads to a
number of identities

vtuxku · vx ju = v
tux

j
u
· vxku

v
x ju
· vtuxku = v

tux
−j
u
· vxku

vtu · vx ju = v
tux

j
u

v
x ju
· vtu = v

tux
−j
u
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In summary:

v
x ju
· vxku = (1− s)v

x j+k
u
− sv

x
−u(j+k)
u

+ sv
x j−uk
u

+ sv
xk−uj
u

v
tux

j
u
· vtuxku =

mu−1∑
h=0

(ah + bh)v
x
k−j+h(u+1)
u

+ ahvxuj−uk−h(u+1)
u

+
mu−1∑
h=0

phvxk+uj−h(u+1)
u

+ phvx−uk−j+h(u+1)
u

vtuxku · vx ju = (1− s)v
txk+j

u
+ (−s)v

tx
−u(k+j)
u

+ sv
tx j−uk

u
+ sv

txk−uj
u

v
x ju
· vtuxku = (1− s)v

txk−j
u

+ (−s)v
tx
−u(k−j)
u

+ sv
tx−j−uk

u
+ sv

txk+uj
u
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This leads to one immediately interesting (to me at least)
consequence about the structure of HNu .

Theorem
If we define H0

Nu
= Span({vx iu}) and H1

Nu
= Span({vtux iu}) then the

above facts about how the basis elements multiply implies that
HNu can be decomposed as a Z2 graded ring HNu = H0

Nu
⊕ H1

Nu
.

Proof.
By the above product table for the vn, one sees that
H i
Nu
H j
Nu
⊆ H i+j

Nu
. Indeed, one has that vtuvx ju

= v
tux

j
u

so that

vtuH
0
Nu
⊆ H1

Nu
and therefore vtuH

0
Nu

= H1
Nu

.
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A Worked Out Example in Degree 6

For K = Q we construct a Galois extension L/K with
Gal(L/K ) ∼= D3. First, define p(x) = x3 − 2 ∈ K [x ] which has

roots w , ζw , ζ2w where w = 3
√

2 and ζ = e
2πi
3 . We have that

Gal(L/K ) = 〈r , f 〉 where

r(w) = ζw

r(ζ) = ζ

f (w) = w

f (ζ) = ζ2

so that |r | = 3 and |f | = 2 and Gal(L/K ) ∼= D3. One may verify
that

α =
1

3

1∑
i=0

2∑
j=0

ζ iw j

is a normal basis generator for L/K where trL/K (α) = 1.
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As F = L〈r〉 then β = trL/F (α) = ζ + 1 is a normal basis generator
for F/K where trF/K (β) = β + f (β) = 1 and

irrF/K (β) = x2 − x − 1 which means F = Q(
√
−3).

Now, since Υ3 = {1,−1} then R(D3, [D3]) = {λ(D3), ρ(D3)} so
the ’interesting’ Hopf algebra action is by N1 = λ(D3)
corresponding to u = 1 ∈ Υ3 so that d1 = gcd(u + 1, 3) = 1 and
m1 = 3 and so, as observed earlier, Fd1 = L and γ = α.
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The ’vn’ basis for HN1 is

vx01
= v1 = 1

vx1 = βx1 + (1− β)x21

vx21
= βx21 + (1− β)x1

vt1 =

(
−1

3
w2β +

1

3
+

1

3
wβ − w/3

)
t1x1 +

(
−1

3
wβ +

1

3
+

1

3
w2β − 1

3
w2

)
t1x1

2

+

(
1

3
w2 + w/3 +

1

3

)
t1

vt1x1 =

(
2

3
w2β +

1

3
wβ − w/3 +

1

3

)
t1x1 +

(
−1

3
wβ − 2

3
w2β +

2

3
w2 +

1

3

)
t1x1

2

+

(
w/3− 2

3
w2 +

1

3

)
t1

vt1x21
=

(
−1

3
w2β − 2

3
wβ +

2

3
w +

1

3

)
t1x1 +

(
2

3
wβ +

1

3
w2β − 1

3
w2 +

1

3

)
t1x1

2

+

(
−2

3
w +

1

3
w2 +

1

3

)
t1
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Using MAPLE we can compute the different ’trace pairings’ for the coefficients in the
different products.

trL/F (r0(α)α) = a0 + b0β =
−5

3
+

5

3
β

trL/F (r1(α)α) = a1 + b1β =
1

3
+
−1

3
β

trL/F (r2(α)α) = a2 + b2β =
1

3
+
−1

3
β

trL/F (f (r0(α)α)) = (a0 + b0)− b0β = −5

3
β

trL/F (f (r1(α)α)) = (a1 + b1)− b1β =
1

3
β

trL/F (f (r0(α)α)) = (a2 + b2)− b2β =
1

3
β

trL/F (r0(α)f (α)) = p0 =
5

3

trL/F (r1(α)f (α)) = p1 = −1

3

trL/F (r2(α)f (α)) = p2 = −1

3
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So for example, we have the simplest product, namely the commuting basis elements vx1
and vx21

.
vx1 · vx21 = vx21

· vx1 = −vx01 + vx21
+ vx1

and the others can be ’clustered’ given the similarities one sees:

vx1 · vx1 = −vx1 + 2vx01
vx21
· vx21 = −vx21 + 2vx01

vx21
· vt1x1 = −vt1x1 + 2vt1

vt1x1 · vx1 = −vt1x1 + 2vt1
vx1 · vt1x21 = −vt1x21 + 2vt1

vt1x21
· vx21 = −vt1x21 + 2vt1

and

vt1 · vt = 5/3vx01
− 1/3vx21

− 1/3vx1

vt1 · vt1x1 = 5/3vx1 − 1/3vx01
− 1/3vx21

vt1x21
· vt1 = 5/3vx1 − 1/3vx01

− 1/3vx21
vt1 · vt1x21 = 5/3vx21

− 1/3vx01
− 1/3vx1

vt1x1 · vt1 = 5/3vx21
− 1/3vx01

− 1/3vx1
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and

vt1x1 · vt1x1 = −7/3vx01
+ 5/3vx21

+ 5/3vx1

vt1x21
· vt1x21 = −7/3vx01

+ 5/3vx21
+ 5/3vx1

vt1x21
· vt1x1 = −7/3vx1 + 11/3vx01

− 1/3vx21
vt1x1 · vt1x21 = −7/3vx21

+ 11/3vx01
− 1/3vx1

and

vx21
· vt1 = vt1x1

vt1 · vx1 = vt1x1
vx1 · vt1 = vt1x21
vt1 · vx21 = vt1x21

and

vx21
· vt1x21 = −vt1 + vt1x21

+ vt1x1

vt1x1 · vx21 = −vt1 + vt1x21
+ vt1x1

vt1x21
· vx1 = −vt1 + vt1x21

+ vt1x1

vx1 · vt1x1 = −vt1 + vt1x21
+ vt1x1
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The goal is to show that even though none of the HNu are
isomorphic as Hopf-algebras, they are isomorphic as K -algebras.

An ad-hoc approach/example in the D3 case is to utilize the vn
basis to construct matrix units, and therefore an explicit
isomorphism (K [λ(D3)])D3 = HN1 → HN−1 = K [ρ(D3)].

This is made easier by the knowledge of the multiplication table for
the {vn} we just explored.
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We know that K [D3] ∼= K × K ×M2(K ) is the Wedderburn
decomposition so the difficulty is in finding a ’copy’ of M2(K )
inside HN1 , namely a set of matrix units.

Consider

h1,1 =
1

3
(vx01
− vx21

)

h1,2 =
1

6
(vt1 − vt1x1)

h2,1 =
1

3
(vt1 − vt1x21

)

h2,2 =
1

3
(vx01
− vx1)

which we assert correspond to the elementary 2× 2 matrices[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
.
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If the character values of D3 lie in K then the orthogonal
idempotents

eχi =
χi (1)

|D3|
∑
g∈D3

χi (g
−1)g

lie in K [D3].

There are two 1-d characters χ1 and χ2, where χ1(g) = 1 for all
g ∈ D3, χ2(x i1) = (−1)i , χ2(t1x

i
1) = 0, as well as the 2-d character

χ3 where χ3(1) = 2, χ3(x1) = −1,χ3(x21 ) = −1, χ3(t1x
j
1) = 0
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In particular we obtain

eχ1 =
1

6
(t1x

2
1 + t1x1 + t1 + x21 + x1 + 1)

eχ2 =
1

6
(−t1x21 − t1x1 − t1 + x21 + x1 + 1)

eχ3 =
1

3
(2− x1 − x21 )

but what is quite extraordinary is how these may be represented in
terms of the v -basis, namely that they actually reside in
HN1 = (K [λ(D3)])D3 .
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Specifically

eχ1 =
1

6
(t1x

2
1 + t1x1 + t1 + x21 + x1 + 1)

=
1

6
(vt1x21

+ vt1x1 + vt1 + vx21
+ vx1 + vx01

)

eχ2 =
1

6
(−t1x21 − t1x1 − t1 + x21 + x1 + 1)

=
1

6
(−vt1x21 − vt1x1 − vt1 + vx21

+ vx1 + vx01
)

eχ3 =
1

3
(2− x1 − x21 )

=
1

3
(2vx01

− vx1 − vx21
)

and the idempotent eχ3 is used to obtain the hi ,j .
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What we have then is that HN1 = Hλ (expressed in its Wedderburn
form as K ×K ×Mat2(K )) has basis {eχ1 , eχ2 , h1,1, h1,2, h2,1, h2,2},
which are all expressed in terms of the v

t i1x
j
1

basis vectors, explicitly

(
a, b,

[
c d
e f

])
7→ aeχ1 + beχ2 + ch1,1 + dh1,2 + eh2,1 + fh2,2

where, for example, we can see where the identity element of the
direct product gets mapped

(
1, 1,

[
1 0
0 1

])
7→ eχ1 + eχ2 + h1,1 + h2,2 = vx01

which is congruous with the observation earlier that vx01
is the

identity element of HNu .
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As an interesting computational aside, the sub-algebra
H0
N1

= Span({v
x j1
}) can also be written as

Span({eχ1 + eχ2 , h1,1, h2,2}), namely as those elements of the form

(
a, a,

[
b 0
0 f

])
and similarly H1

N1
= Span({v

t1x
j
1
}) = Span({(eχ1 − eχ2), h1,2, h2,1})

which equals (
a,−a,

[
0 c
d 0

])
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Going further, we can view HN1 = Hλ as a group ring in a kind of
natural way. One may show that in M2(K ) one has matrices

X =

[
0 1
−1 −1

]
T =

[
0 1
1 0

]
which can be shown satisfy the equations X 3 = I , T 2 = I and
XT = TX 2 so that 〈X ,T 〉 ∼= D3 and therefore have elements
(units) of the Wedderburn decomposition of HN1 which also satisfy
these relations, namely hX = (1, 1,X ) and hT = (1, 1,T ).
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What we would like is to show that

{1, hX , (hX )2, hT , hThX , hT (hx)2} =

{(1, 1, I ), (1, 1,X ), (1, 1,X 2), (1, 1,T ), (1, 1,TX ), (1, 1,TX 2)}

are yet a different basis for HN1 .

As it turns out, one must adjust hT , and set it to be (1,−1,T ) in
order to achieve linear independence, which yields the set

{(1, 1, I ), (1, 1,X ), (1, 1,X 2), (1,−1,T ), (1,−1,TX ), (1,−1,TX 2)}

which is linearly independent.
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The five 2× 2 matrices X ,X 2,T ,TX ,TX 2 cannot be a linearly
independent subset of M2(K ). And in terms of the basis
{eχ1 , eχ2 , h1,1, h1,2, h2,1, h2,2} one has

1 = 1eχ1 + 1eχ2 + 1h1,1 + 0h1,2 + 0h2,1 + 1h2,2

hX = 1eχ1 + 1eχ2 + 0h1,1 + 1h1,2 + (−1)h2,1 + (−1)h2,2

(hX )2 = 1eχ1 + 1eχ2 + (−1)h1,1 + (−1)h1,2 + 1h2,1 + 0h2,2

hT = 1eχ1 + (−1)eχ2 + 0h1,1 + 1h1,2 + 0h2,1 + 1h2,2

hThX = 1eχ1 + (−1)eχ2 + (−1)h1,1 + (−1)h1,2 + 0h2,1 + 1h2,2

hT (hX )2 = 1eχ1 + (−1)eχ2 + 1h1,1 + 0h1,2 + (−1)h2,1 + (−1)h2,2

and, for reference, we can represent hX and hT in terms of the v
basis.
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hX =
2

3
vx1 +

1

3
vx21
− 1

6
vt1 −

1

6
vt1x1 +

1

3
vt1x21

hT =
5

6
vt1 +

1

6
vt1x1
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So we have (in a kind of bare-handed way) demonstrated the
following:

Theorem
If D3 = 〈x , t | x3 = t2 = 1, xt = tx2〉 then there is a K-algebra
isomorphism ψ : K [D3]→ HN1 given by ψ(x) = hX and ψ(t) = hT .
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Idempotents in HN

The similarity of the expression of the idempotents expressed in
terms of the group elements and the v basis, e.g.

eχ1 =
1

6
(t1x

2
1 + t1x1 + t1 + x21 + x1 + 1)

=
1

6
(vt1x21

+ vt1x1 + vt1 + vx21
+ vx1 + vx01

)

makes one wonder if there is, more generally, a direct analogue of
the eχi framed in terms of the vn?

Conjecture/Question: If Hλ contains all the central idempotents as
the group ring Hρ does that imply that Hλ ∼= Hρ?
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Consider the following.

Definition
For N ∈ R(G ) and {vn} the basis for HN = (L[N])λ(G) let

vχ =
χ(eN)

|N|
∑
n∈N

χ(n−1)vn

for each irreducible character χ : N → K of N.

We model this on the usual idempotent defintion
eχ = χ(eN)

|N|
∑

n∈N χ(n−1)n ∈ K [N].

The first question is whether these vχ are similarly orthogonal
idempotents. Under some assumptions on χ we can show more in
fact.
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Theorem
For N ∈ R(G ) and vχ as defined above, if χ is real valued and all
character values lie in K, and χ(λ(g)nλ(g)−1) = χ(n) for all
n ∈ N and g ∈ G then vχ = eχ.

Proof:
By assumption χ(n−1) = χ(n) = χ(n) and so:

vχ =
χ(eN)

|N|
∑
n∈N

χ(n−1)vn

=
χ(eN)

|N|
∑
n∈N

∑
g∈G

χ(n−1)g(α)λ(g)nλ(g)−1

=
χ(eN)

|N|
∑
g∈G

g(α)
∑
n∈N

χ(n−1)λ(g)nλ(g)−1

=
χ(eN)

|N|
∑
g∈G

g(α)
∑
n∈N

χ(n)λ(g)nλ(g)−1

=
χ(eN)

|N|
∑
g∈G

g(α)
∑
n∈N

χ(λ(g)nλ(g)−1)λ(g)nλ(g)−1
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=
χ(eN)

|N|
∑
g∈G

g(α)
∑
m∈N

χ(m)m

=
χ(eN)

|N|
∑
g∈G

g(α)
∑
m∈N

χ(m−1)m

=
χ(eN)

|N|
∑
m∈N

χ(m−1)m

= eχ

where the second to last line is due to the assumption that
trL/K (α) = 1, which completes the proof.
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As a corollary, we have the following.

Corollary

For N ∈ R(G ) and vχ as defined above, if χ is real valued and all
character values lie in K and the action of λ(G ) on N is by inner
automorphisms, then vχ = eχ

Proof.
If conjugation by every λ(g) induces an inner automorphism of N
then all conjugacy classes are preserved and therefore all character
values are preserved.
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As a result, we have some immediate examples.

If G is such that all its irreducible character values are real and lie
in K then for N = λ(G ), ρ(G ) one has vχ = eχ.

Of course, the upshot of this is that for these N the Hopf algebras
HN contain the same orthogonal idempotents as does K [N] itself
(and therefore has identical Wedderburn decomposition to that of
K [N]?)
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Corollary

If N ∈ R(G ) and χ is a real valued irreducible character of N such
that all values of χ lie in K and χ(λ(g)nλ(g)−1) = χ(n) for all
n ∈ N and g ∈ G then eχ ∈ HN .
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For Dn, the question is, for what irreducible character(s) χ do we
have χ(λ(g)nλ(g)−1) = χ(n) for every n ∈ N where N ∈ H(Dn)?

Given Nu ∈ H(Dn) where Nu = 〈xu, tu〉 and where λ(G ) = 〈r , f 〉
acts by

rxur
−1 = xu

r tur
−1 = tux

−(u+1)
u

f xuf
−1 = x−uu

f tuf
−1 = tu

we look at whether each χ is λ(G )-invariant.
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If n is even then the 1-d irreps are χ1, χ2, χ3, and χ4 where

x ju tux
j
u

χ1 1 1

χ2 1 -1

χ3 (−1)j (−1)j

χ4 (−1)j (−1)j+1

and for n odd, χ3 and χ4 aren’t defined.

Clearly χ1 and χ2 are λ(G )-invariant, and for n even, u ∈ Υn must
be odd, and so u + 1 must be even and so j − (u + 1) ≡ j (mod 2)
and j ≡ −ju (mod 2) and so χ3 and χ4 are as well.
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For the two dimensional irreps χh where χh(tux
j
u) = 0 and

χh(x ju) = 2cos(2hjπn ) for 0 < h < n
2 the question is whether

cos

(
2hjπ

n

)
= cos

(
−2hujπ

n

)
for u ∈ Υn?

And here is where a problem arises, namely the above equality
holds (for all h ∈ (0, n2 )) only if u = ±1, i.e. for N1 = λ(Dn) and
N−1 = ρ(Dn).

But at least we can conclude that Hλ = HN1
∼= HN−1 = Hρ for all

n, not just n = 3, or even n a prime necessarily.
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Questions:

(1) Does the fact that eχ ∈ HN1 = Hλ for each irreducible
character χ imply that HN1 has the same Wedderburn
decomposition as HN−1 = Hρ = K [ρ(Dn)]?

(2) For those irreducible characters χ which are not
λ(G )-invariant, are the vχ idempotent? central?
(even if they don’t lie in K [ρ(Dn)]?)
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Thank you!
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